Классификация методов прогнозирования
Страница 5

Статистическая характеристика группового ответа предполагает обработку полученных результатов с помощью следующих методов измерения: ранжирование, парное сравнение, последовательное сравнение и непосредственная оценка.

В развитии метода «Дельфи» применяется перекрестная коррекция. Будущее событие представляется как огромное множество связанных и переходящих друг в друга путей развития. При введении перекрестной корреляции значение каждого события за счет введенных определенных связей будут изменятся либо в положительную, либо в отрицательную сторону, корректируя тем самым вероятности рассматриваемых событий. С целью будущего соответствия модели реальным условиям в модель могут быть введены элементы случайности.

Недостатком данного метода является то, что проблема коррелирующих научно-технических сдвигов является очень сложной, так как в реальной жизни величину корреляции очень трудно измерить, корреляционные связи нечетки и варьируют в широких пределах в зависимости от рассматриваемых достижений.

Сущность методов прогнозной экстраполяции заключается в изучении динамики изменения экономического явления в предпрогнозном периоде и перенесения найденной закономерности на некоторый период будущего. Обязательным условием применения экстраполяционного подхода в прогнозировании следует считать познание и объективное понимание природы исследуемого процесса, а также наличие устойчивых тенденций в механизме развития.

Однако степень реальности такого рода прогнозов и соответственно мера доверия к ним в значительной мере обуславливаются аргументированностью выбора пределов экстраполяции и стабильностью соответствия «измерителей» по отношению к сущности рассматриваемого явления. Следует обратить внимание на то, что сложные объекты, как правило, не могут быть охарактеризованы одним параметром.

Операцию экстраполяции в общем виде можно представить как определение значений функции.

Простейшим способом прогнозирования считается подход, формирующий прогнозную оценку от фактически достигнутого уровня при помощи среднего прироста или темпа роста.

В соответствии с ним прогноз к шагов вперед на момент времени

Этот способ обладает определенными достоинствами, среди которых незначительна трудоемкость вычислительного алгоритма, универсальные расчетные схемы. Кроме указанных достоинств, он имеет несколько существенных недостатков. Во-первых, все фактические наблюдения являются результатом закономерности и случайности, следовательно, основываться на последнем наблюдении неправомерно. Во-вторых, нет возможности оценить правомерность использования среднего прироста в каждом конкретном случае. В-третьих, данный подход не позволяет сформировать интервал, в который попадает прогнозируемая величина. В связи с этим метод экстраполяции не дает точных результатов на длительных срок прогноза, потому что данный метод исходит из прошлого и настоящего, и тем самым погрешность накапливается. Этот метод дает положительные результаты на ближайшую перспективу прогнозирования тех или иных объектов – на 5-7 лет.

Для повышения точности экстраполяции используются различные приемы. Один из них состоит, например, в том, чтобы экстраполируемую часть общей кривой развития (тренда) корректировать с учетом реального опыта развития отрасли-аналога исследований или объекта, опережающий в своем развитии прогнозируемый объект.

Страницы: 1 2 3 4 5 6 7 8 9


Рекомендуем к прочтению:

Обращение в фонды
Участие в конкурсах на получение гранта имеет свою специфику. Выбирайте тот фонд, направлениям финансирования и условиям которого максимально соответствует и ваша организация, и предоставляемый на конкурс проект. Обратите внимание, работа ...

Ответственность социального работника перед коллегами
Между социальными работниками существуют специфические взаимоотношения, обусловленные особенностями социальной работы как профессии и личностными характеристиками специалистов. Во-первых, социальная работа является делом не только одного ...

Средняя арифметическая.
Наиболее распространенным видом средних является средняя арифметическая. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных её единиц. Для общественных явлен ...